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Abstract

We show that the following two separately developed theories, the theory of Benenti systems
in mathematical physics and the theory of projectively equivalent metrics in classical differential
geometry, study essentially the same object. Combining methods and results from these two the-
ories, one can prove the commutative integrability of projectively equivalent pseudo-Riemannian
metrics and construct infinitely many new Hamiltonian systems, integrable in the classical and in
the quantum sense.
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1. Introduction

1.1. Benenti systems

Let g = gij be a Riemannian metric on a smooth manifoldMn of dimensionn.

Definition 1. A non-degenerate(1, 1)-tensor fieldL on Mn is called Benenti tensor field
with respect to the metricg, if L is self-adjoint and satisfies the following conditions:

1. The Nijenhuis tensor ofL is identically zero.
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2. For the functionsH
def= (1/2)gij pipj , F

def=giαL
j
αpipj , we have

{H, F } = 2H

(
∂ trace(L)

∂xα
gαβpβ

)
,

where{·, ·} denotes the standard Poisson bracket onT ∗Mn andxα, pβ are the standard
coordinates onT ∗Mn.

Under these conditions, the geodesic flow of the metricg admitsn commuting integrals
of a certain form, see[2,7]. If the eigenvalues ofL are all different at least at one point
of the manifold, then the integrals are functionally independent almost everywhere on
the cotangent bundle to some neighborhood of the point. Below we will show that if the
eigenvalues of Benenti tensor fieldL are all different at one point of the manifold then it
is so at almost every point of the manifold; then the integrals are functionally independent
almost everywhere and the geodesic flow ofg is Liouville integrable.

1.2. Metrics with the same geodesics

Definition 2. Two metricsg andḡ on Mn are called projectively equivalent, if they have
the same geodesics considered as unparameterized curves.

Metrics with the same geodesics is a very classical subject. They were already stud-
ied by Italian mathematical school of the 19th century. In 1865, Beltrami[1] found the
first examples of projectively equivalent metrics and showed that any metric, projectively
equivalent to the round metric of the sphere, is itself the round metric of the sphere. In
1869, Dini obtained a local description of projectively equivalent metrics on surfaces. In
1896, Levi-Civita found a local description of projectively equivalent metrics on manifolds
of arbitrary dimension. Later, metrics with the same geodesics were considered by Weyl,
Eisenhart, Cartan, Thomas, Lichnerowicz, Venzi, Voss, Pogorelov, Mikes, Aminova, Sin-
jukov and Solodovnikov. They found a lot of beautiful tensor properties of projectively
equivalent metric, see the review paper[15] for details.

However, the global behavior of projectively equivalent metrics is not understood. Most
known global results on projectively equivalent metrics require additional strong geomet-
rical assumptions. For example, for Einstein or (hyper)Kahlerian metrics beautiful results
were obtained by Lichnerowicz[9], Venzi [19], Mikes [15] and Hasegawa and Fujimura
[6].

An explanation for this is that Dini’s and Levi-Civita’s theorems describe the metrics
in the neighborhoods of the points where the eigenvalues of one metric with respect to
the other do not bifurcate and it is not always the case: in[13], it is proved that if the
manifold is not covered by the torus then projectively equivalent metrics must have points
where the eigenvalues bifurcate. The nature of these bifurcations is very important for
understanding the global behavior of projectively equivalent metrics. InSection 4, we
show that the eigenvalues behave quite regularly. In particular, if they are all different
at some point, the multiplicity of any eigenvalue at any other point cannot be greater
than 3.
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2. Main results

Let g be a Riemannian metric onMn, let ḡ be a (possibly, pseudo-Riemannian) metric
onMn. Consider the(1, 1)-tensor fieldL given by the formula

Li
j

def=
(

det(ḡ)

det(g)

)1/(n+1)

ḡiαgαj . (1)

Remark 1. If ḡ is a Riemannian metric then the determinant det(ḡ) is positive and the
tensor fieldL is well defined. Ifn is even,n + 1 is odd and(det(ḡ))1/(n+1) is always well
defined. Ifn is even and det(ḡ) is negative, we can consider−ḡ instead ofḡ; this changes
the sign of det(ḡ) and makesL well defined. Later, we will always assume that the sign of
ḡ is chosen so that(det(ḡ)/det(g))1/(n+1) is well defined.

Theorem 1. The metricsg and ḡ are projectively equivalent if and only ifL is Benenti
tensor field for the metricg.

As we already mentioned before, one of the most interesting features of metrics admitting
Benenti tensor field is the integrability of the geodesic flow, see[2,3,7].

Corollary 1 (Matveev and Topalov[10]). Let the metricsg, ḡ be projectively equivalent.
For any parametert , consider the(1, 1)-tensor field

St
def=det(L − t Id)(L − t Id)−1. (2)

Let us identify the tangent and cotangent bundles ofMn byg. Consider the standard Poisson
structure onT ∗Mn. Then for anyt1, t2, the functions

Iti : TMn → R, Iti (ξ)
def=g(Sti (ξ), ξ) (3)

are commuting integrals for the geodesic flow ofg.

Remark 2. Although(L− t Id)−1 is not defined fort lying in the spectrum ofL, the tensor
field St , and therefore the functionIt , is well defined for anyt . Moreover, as we will show
in Section 4, St is a polynomial (int) of degreen − 1 with coefficients being(1, 1)-tensor
fields.

The theories of Benenti systems and of projectively equivalent metrics are developed
separately.Theorem 1suggests to apply the methods of one theory to the other. We will
formulate a few results of such application inSection 5.

The paper is organized as follows. InSection 3, we prove the main theorem. InSection 4,
we show that the eigenvalues ofL behave quite regularly: they are globally ordered and the
points of bifurcation of the eigenvalues are organized into nowhere dense closed subset of
measure zero. In particular, if the eigenvalues ofL are all different at one point of a connected
manifold, then it is so at almost each point of the manifold and the geodesic flow is Liouville
integrable. InSection 5, we discuss projective equivalence of pseudo-Riemannian metrics,
Topalov–Sinjukov hierarchy of Benenti systems with potential and quantum integrability.
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3. Proof of main theorem

The main goal of this section is to proveTheorem 1. In order to do it, we first formulate
a necessary and sufficient condition for two metrics to be projectively equivalent.

Theorem 2. Let g be a Riemannian metric, L a non-degenerate self-adjoint operator.
Consider the metric̄g defined bȳg(ξ, η) = (1/detL)g(L−1ξ, η). The metricsg and ḡ are
projectively equivalent, if and only if the following relation holds for any three vectorsu, v

andw:

g((∇uL)v, w) = 1
2g(v, u) · dθ(Lw) + 1

2g(w, u) · dθ(Lv), (4)

where∇ is the Levi-Civita connection related to the metricg andθ
def= ln detL.

Remark 3. Since∇uL is a self-adjoint operator, the condition(4) can be equivalently
rewritten as

g((∇uL)v, v) = g(v, u) · dθ(Lv). (5)

Proof of Theorem 2. Let γ (t) be a geodesic of the metricg parameterized by an arbitrary
parametert . The condition thatγ (t) is a geodesic can then be formulated as follows: the
covariant derivative of the velocity vectorγ̇ alongγ is parallel toγ̇ . Analytically this means
that(∇γ̇ γ̇ ) ∧ γ̇ = 0.

It is clear thatg andḡ have the same geodesics, if and only if

(∇γ̇ γ̇ − ∇̄γ̇ γ̇ ) ∧ γ̇ = 0.

Here∇̄ is the symmetric connection related toḡ.
The difference between∇ and∇̄ can be considered as a vector-valued bilinear symmetric

form which we denote byA(u, ξ)
def=∇uξ − ∇̄uξ .

Thus, the projective equivalence ofg andḡ means that for anyξ

A(ξ, ξ) ∧ ξ = 0,

or, equivalently,A(ξ, ξ) is parallel toξ . It is easy to see that this condition is satisfied if and
only if

A(ξ, ξ) = 2l(ξ)ξ,

or, sinceA is symmetric,

A(u, ξ) = ∇uξ − ∇̄uξ = l(u)ξ + l(ξ)u,

for a certain linear functionall.
The next step is to find the explicit form of the functionall. To this end, let us compute the

difference between the divergences corresponding tog andḡ. By using the above formula
we get immediately

divg ξ − divḡ ξ = (n + 1)l(ξ).
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On the other hand, using the standard formula for divergence

divg ξ =
∑

i

(
∂ξ i

∂xi
+ ∂ ln

√
detg

∂xi
ξ i

)
,

we see that

divg ξ − divḡ ξ = 1
2 d

(
ln

detg

detḡ

)
(ξ).

Therefore,l = 1/(2(n + 1)) d( ln detg/detḡ) = (1/2) dθ . Finally, the metricsg andḡ are
projectively equivalent, if and only if

A(u, ξ)
def=∇uξ − ∇̄uξ = 1

2(dθ(u)ξ + dθ(ξ)u). (6)

The projective equivalence ofg and ḡ can be equivalently reformulated in terms of the
covariant derivative∇ḡ. We have

(∇uḡ)(ξ, η) = (∇uḡ)(ξ, η) − (∇̄uḡ)(ξ, η)

= ∇u(ḡ(ξ, η)) − ∇̄u(ḡ(ξ, η)) − ḡ(∇uξ − ∇̄uξ, η) − ḡ(ξ, ∇uη − ∇̄uη)

= −ḡ(ξ, η) · dθ(u) − 1
2 ḡ(ξ, u) · dθ(η) − 1

2 ḡ(η, u) · dθ(ξ),

so that

(∇uḡ)(ξ, η) = −ḡ(ξ, η) · dθ(u) − 1
2 ḡ(ξ, u) · dθ(η) − 1

2 ḡ(η, u) · dθ(ξ). (7)

Here we use the fact that∇u(ḡ(ξ, η)) = ∇̄u(ḡ(ξ, η)) since the covariant derivative of a
scalar function coincides with the ordinary derivative alongu.

Remark 4. In the tensor form, conditions(6) and (7)have been already known to Eisenhart
[5]. Our proof is nothing else but an invariant reformulation of the original Eisenhart’s proof
from [5].

Let us prove that the condition(7) implies the projective equivalence ofg andḡ. We need
to show that formula(7) implies

A(u, ξ) = ∇uξ − ∇̄uξ = 1
2(dθ(u) · ξ + dθ(ξ) · u). (8)

To this end, we note that

∇uḡ(ξ, η) = ḡ(A(u, ξ), η) + ḡ(A(u, η), ξ).

Thus, Eisenhart’s formula(7) can be considered as a system of linear equations onA. The
formula(8) obviously gives a particular solution. Therefore, it is sufficient to show that this
solution is unique. Equivalently, this means that the homogeneous system

ḡ(A(u, ξ), η) + ḡ(A(u, η), ξ) = 0

admits only trivial solutions.
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Using the symmetry ofA and this relation, we obtain the following sequence of relations:

ḡ(A(u, ξ), η) = −ḡ(A(u, η), ξ) = −ḡ(A(η, u), ξ) = ḡ(A(η, ξ), u)

= ḡ(A(ξ, η), u) = −ḡ(A(ξ, u), η) = −ḡ(A(u, ξ), η).

Therefore,ḡ(A(u, ξ), η) = −ḡ(A(u, ξ), η) = 0 or, equivalently,A ≡ 0.
Thus, Eisenhart’s condition(7) is equivalent to the projective equivalence ofg and ḡ.

Now let us rewrite(7) in terms of the tensor fieldL. We have

∇uḡ(ξ, η) =
(

∇u

1

detL

)
· g(L−1ξ, η) + 1

detL
· g(∇uL−1ξ, η)

= −d(detL)(u)

detL2
· g(L−1ξ, η) − 1

detL
· g(L−1(∇uL)L−1ξ, η)

= − 1

detL
(d( ln detL)(u) · g(L−1ξ, η) + g((∇uL)L−1ξ, L−1η)).

Substituting this expression into Eisenhart’s formula, we get

− 1

detL
(d( ln detL)(u) · g(L−1ξ, η) + g((∇uL)L−1ξ, L−1η))

= − 1

detL
(g(L−1ξ, η) · dθ(u) + 1

2(L−1ξ, u) · dθ(η) + 1
2(L−1η, u) · dθ(ξ)).

Taking into account thatθ = ln detL, contracting by detL and replacingL−1ξ andL−1η

by v andw, we finally obtain the relation(4). This completes the proof. �

Proof of Theorem 1. Let g be a Riemannian metric,L a self-adjoint operator. Consider
the metricḡ defined byḡ(ξ, η) = 1/(detL)g(L−1ξ, η). Our goal is to prove that the
metricsg and ḡ are projectively equivalent, if and only if the following two conditions
hold:

(i) The Nijenhuis tensor ofL vanishes.
(ii) g(∇uLu, u) = g(u, u)d traceL(u).

It is easy to see that (ii) is equivalent to the second condition inDefinition 1.
We first prove that conditions (i) and (ii) imply formula(5) and, consequently, the pro-

jective equivalence of the metricsg andḡ. We need the following technical statement.

Lemma 1. If the Nijenhuis tensor ofL vanishes then, for any vectoru,

d traceL(u) = (d ln detL)(Lu).

Proof. We first notice that for any(1, 1)-tensor fieldL and vector fieldξ the following
identity holds:

(d ln detL)(ξ) = trace(L−1Lξ L),
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whereLξ is the Lie derivative alongξ . Indeed,

trace(L−1Lξ L) = (L−1)i
j

(
ξk ∂L

j
i

∂xk

+ L
j
k

∂ξk

∂xi
− Lk

i

∂ξj

∂xk

)

= (L−1)i
j ξ k ∂L

j
i

∂xk

+ δi
k

∂ξk

∂xi
− δk

j

∂ξj

∂xk
= (L−1)i

j ξ k ∂L
j
i

∂xk

= 1

detL
L̂i

j ξk ∂L
j
i

∂xk

= 1

detL
ξk ∂ detL

∂xk

= Lξ ( ln detL).

HereL̂i
j denotes the element of the co-matrixL̂.

Now suppose the Nijenhuis tensor ofL vanishes. This means that for any vector fieldu:

LLuL = LLuL.

It follows from this that

d traceL(u) = Lu traceL = trace(LuL) = trace(L−1LLuL) = (d ln detL)(Lu).

The lemma is proved. �

Therefore, formula(5) becomes

g(∇uLv, v) = g(v, u) · d traceL(v).

To prove this identity, we representg(∇uLv, w) in the form

g(∇uLv, w) = 1
2g(v, u) · d traceL(w) + 1

2g(w, u) · d traceL(v) + B(u, v, w), (9)

whereB(u, v, w) is a certain tensor. We need to verify thatB is actually zero.
Notice thatB satisfies one natural symmetry condition

B(u, v, w) = B(u, w, v).

Besides, condition (ii) immediately impliesB(u, u, u) ≡ 0. It is easy to see that, together
with the symmetry condition, this identity simply means that

B(u, v, w) + B(v, w, u) + B(w, u, v) = 0.

Finally, let us use the identityN(L) = 0. It can be equivalently written as

(∇LuL)v − L(∇uL)v − (∇LvL)u + L(∇vL)u = 0.

From this we get

0= g((∇LuL)v, w) − g(L(∇uL)v, w) − g((∇LvL)u, w) + g(L(∇vL)u, w)

= g((∇LuL)v, w) − g((∇uL)v, Lw) − g((∇LvL)u, w) + g((∇vL)u, Lw).

Substituting the representation(9) into this formula, we see that the first two terms of(9)
disappear and we obtain one more linear relation onB:

B(Lu, v, w) − B(u, v, Lw) − B(Lv, u, w) + B(v, u, Lw) = 0.
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Thus, we have the following three linear relations onB:

B(u, v, w) − B(u, w, v) = 0, B(u, v, w) + B(v, w, u) + B(w, u, v) = 0,

B(Lu, v, w) − B(u, v, Lw) − B(Lv, u, w) + B(v, u, Lw) = 0.

Since the metricg is positive definite, all eigenvalues ofL are real. Then it is possible
to diagonalizeL at each point. It turns out that in the case when all the eigenvalues ofL

are distinct, this system of linear equations admits the zero solution only. More precisely,
consider the basise1, . . . , en such thatL(ei) = λiei . Then, settingu = ei, v = ej , w = ek,
and using the symmetry with respect to the second and the third arguments ofB, we obtain

(λi − λk)B(ei, ej , ek) + (λk − λj )B(ej , ek, ei) = 0.

Making the cyclic permutation, we obtain two more relations:

(λj − λi)B(ej , ek, ei) + (λi − λk)B(ek, ei, ej ) = 0,

(λk − λj )B(ek, ei, ej ) + (λj − λi)B(ei, ej , ek) = 0.

Together with

B(ei, ej , ek) + B(ej , ek, ei) + B(ek, ei, ej ) = 0,

we have a system of four homogeneous linear equations which obviously admits only trivial
solutions if at least two of the eigenvaluesλi, λj , λk are different.

Thus, the only case which needs some additional discussion isλi = λj = λk = λ. We
will use the following general properties of linear operators with zero Nijenhuis tensor.

Proposition 1. SupposeL is a linear operator on TMn diagonalizable at each point such
that the multiplicities of its eigenvalues are constant in a neighborhood of a pointP ∈ M.
Suppose that the Nijenhuis tensor ofL vanishes. Then the following two statements hold:

1. For each eigenvalueλ, the distributionUλ of the eigenspaces related toλ is integrable.
2. Letv be an eigenvector corresponding toλ, andµ(x) be another eigenvalue considered

as a function onMn. Then the derivative ofµ alongv is zero.

Remark 5. In fact, the following stronger statement takes place. Under the above as-
sumptions, there exist local regular coordinatesx1, . . . , xn such that in these coordinates
L = diag(λ1, . . . , λn). Moreover, ifλi �= λj then∂λi/∂xj = 0.

This statement is well known, although we did not find a good reference. We give a proof
for self-completeness.

Proof of Proposition 1.

(1) Letu, v ∈ Uλ be eigenvectors ofL. Then using the standard definition of the Nijenhuis
tensor as

NL(u, v) = [Lu, Lv] − L[Lu, v] − L[u, Lv] + L2[u, v],
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we obtain the following algebraic relation:

0 = [λu, λv] − L[λu, v] − L[u, λv] + L2[u, v] = (L − λE)2[u, v].

Then [u, v] is an eigenvector ofL corresponding to the same eigenvalueλ. Thus,
[u, v] ∈ Uλ andUλ is, consequently, integrable.

(2) Now consider two eigenvectorsv, w corresponding to two different eigenvaluesλ and
µ, respectively. Then substitutingv andw into the above formula for the Nijenhuis
tensor, we get

0= [λv, µw] − L[λv, w] − L[v, µw] + L2[v, w]

= (L − λE)(L − µE)[v, w] + (λ − µ)w(λ)v + (λ − µ)v(µ)w.

SinceL is diagonalizable, then neitherv norw (as well as none of its non-trivial linear
combinations) belongs to the image of the operator(L−λE)(L−µE). Thus,w(λ) = 0
andv(µ) = 0, as was to be proved. �

To complete the proof, we now need one more technical statement. As above, we assume
that the multiplicity ofλ is locally constant at a pointP ∈ M. So we can locally consider
the integral submanifoldXλ of the distributionUλ (dimXλ is equal to the multiplicity
of λ).

Lemma 2. Assume that the assumptions ofProposition 1are satisfied and, in addition,
L is self-adjoint with respect to a Riemannian metric g onMn. By ∇̃ and L̃ we denote
the Levi-Civita connection onXλ and the restriction of L onto TXλ, respectively. Then the
following statements are true:

1. For any three vectorsu, v, w ∈ Uλ = TP Xλ:

g((∇uL)v, w) = g((∇̃uL̃)v, w).

2. For anyu ∈ Uλ = TP Xλ:

d traceL(u) = d traceL̃(u).

Proof. It is well known that the covariant derivatives∇ and∇̃ are connected by the following
relation:

∇̃uv = pr(∇uv),

whereu, v are vector fields tangent toXλ and pr is the orthogonal projection onto the tangent
spaceTP Xλ = Uλ.

It follows from this that for any two vector fieldsu, v tangent toXλ:

pr((∇uL)v) = pr(∇u(Lv) − L∇uv) = pr(∇u(Lv)) − L(pr∇uv)

= ∇̃u(L̃v) − L̃(∇̃uv) = (∇̃uL̃)v.

Here we use thatL is self-adjoint and therefore commutes with the orthogonal projection
pr onto its eigenspaceUλ.
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Finally, sinceg(a, w) = g(pr(a), w) for anya ∈ TP Mn andw ∈ Uλ, we obtain

g((∇uL)v, w) = g(pr(∇uL)v, w) = g((∇̃uL̃)v, w),

as required.
The second statement immediately follows from the second statement ofProposition 1. If

u is an eigenvector ofL corresponding toλ, then for any other eigenvalueµ of the operator
L, we have dµ(u) = 0. This completes the proof. �

We now return to the proof ofTheorem 1. Let u, v, w be eigenvectors ofL related to the
same eigenvalueλ. Then, according to the above statement, the relation(7) can be rewritten
as follows:

g(∇̃uL̃v, w) = 1
2g(v, u) · d traceL̃(w) + 1

2g(w, u) · d traceL̃(v) + B(u, v, w).

This means that without loss of generality we can restrict all our considerations to the
submanifoldXλ and considerL as a scalar operator of the formL = λE.

By puttingv = u, w = u, we get

g(∇̃uL̃u, u) = g(u, u) · d traceL̃(u),

or

g((∇̃uλE)u, u) = g(u, u) · k dλ(u) = dλ(u) · g(u, u) = g(u, u) · k dλ(u),

wherek = dimUλ. It follows immediately from this that dλ(u) = 0 for any eigenvector
u ∈ TP Xλ (or k = 1, but this case has been already discussed above). In other words,λ is
constant onXλ.

Then for anyu, v, w ∈ Uλ the relation(7) becomes trivial

0 = 0 + 0 + B(u, v, w).

It remains to notice that this is exactly the relation we wanted to prove. This completes the
proof of the first part ofTheorem 2.

Let us prove the converse statement. We need to show that Eisenhart’s formula(7) implies
(i) and (ii). Let us show first that Eisenhart’s formula(7) implies vanishing the Nijenhuis
tensor ofL.

To do this, we computeg(NL(u, v), w) for any three vectorsu, v, w ∈ TP Mn by using
(7). We have

g(NL(u, v), w) = g((∇LuL)v − L(∇uL)v − (∇LvL)u + L(∇vL)u, w)

= g((∇LuL)v, w) − g((∇uL)v, Lw) − g((∇LvL)u, w)

+g((∇vL)u, Lw)

= 1
2g(v, Lu) · dθ(Lw) + 1

2g(w, Lu) · dθ(Lv) − 1
2g(v, u) · dθ(L2w)

−1
2g(Lw, u) · dθ(Lv) − 1

2g(u, Lv) · dθ(Lw)−1
2g(w, Lv) · dθ(Lu)

+1
2g(u, v) · dθ(L2w) + 1

2g(Lw, v) · dθ(Lu) = 0.

Thus, the Nijenhuis tensor ofL is identically zero.
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The relation (ii) follows immediately from formula(5) andLemma 1. This completes
the proof of the main theorem. �

Remark 6. One can see that we did not use the positive definiteness of the metricg in
proving that projective equivalence ofg and ḡ implies thatL is Benenti tensor field for
g. Then this is true also for pseudo-Riemannian metrics. In fact, we used the positive
definiteness ofg only once, to prove that the tensorB from (9) is zero.

4. The eigenvalues of the tensor L

The main goal of this section is to prove the following theorem.

Theorem 3. Let (Mn, g) be a geodesically complete connected Riemannian manifold.
Suppose L is Benenti tensor field for g. At each pointx ∈ Mn, denote by

λ1(x) ≤ λ2(x) ≤ · · · ≤ λn(x),

the eigenvalues of L at x. Then, for anyi ∈ {1, . . . , n − 1}, for anyx, y ∈ Mn:

1. λi(x) ≤ λi+1(y).
2. If λi(x) < λi+1(x), thenλi(z) < λi+1(z) for almost every pointz ∈ Mn.
3. If λi(x) = λi+1(y), then there existsz ∈ Mn such thatλi(z) = λi+1(z).

In a weaker form,Theorem 3has been announced in[13] and proved in[14].

Corollary 2. Let (Mn, g) be a geodesically complete connected Riemannian manifold.
Suppose L is Benenti tensor field for g. If the eigenvalues of L are all different at one point
of Mn then they are all different at almost each point ofMn and the geodesic flow ofg is
Liouville integrable.

For projectively equivalent metrics, this fact has been announced in[11] and proved (by a
slightly different method) in[12], see also[14].

Proof of Theorem 3. By definition, the tensorL is self-adjoint with respect tog. Then,
for anyx ∈ Mn, there exists a basis inTxMn such that the metricg is given by the matrix
diag(1, 1, . . . , 1) and the tensorL is given by the matrix diag(λ1, λ2, . . . , λn). Then the
tensor(2) reads

St = det(L − t Id)(L − t Id)(−1) = diag(Π1(t), Π2(t), . . . , Πn(t)),

where the polynomialsΠi(t) are given by the formula

Πi(t)
def= (λ1 − t)(λ2 − t) · · · (λi−1 − t)(λi+1 − t) · · · (λn−1 − t)(λn − t).

Then, for any fixedξ = (ξ1, ξ2, . . . , ξn) ∈ TxMn, the function(3) is the following polyno-
mial in t :

It = ξ2
1Π1(t) + ξ2

2Π2(t) + · · · + ξ2
n Πn(t). (10)
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Consider the roots of this polynomial. From the proof ofLemma 3, it will be clear that they
are real. We denote them by

t1(x, ξ) ≤ t2(x, ξ) ≤ · · · ≤ tn−1(x, ξ). �

Lemma 3.

1. For anyξ ∈ TxMn,

λi(x) ≤ ti (x, ξ) ≤ λi+1(x).

In particular, if λi(x) = λi+1(x) thenti (x, ξ) = λi(x) = λi+1(x).
2. If λi(x) < λi+1(x) then for any constantτ the Lebesgue measure of the set

Vτ ⊂ TxMn, Vτ
def={ξ ∈ TxMn : ti (x, ξ) = τ },

is zero.

Proof of Lemma 3. Evidently, the coefficients of the polynomialIt depend continuously
on the eigenvaluesλi and on the componentsξi . Then it is sufficient to prove the first
statement of the lemma assuming that the eigenvaluesλi are all different and thatξi are
non-zero. For anyα �= i, we evidently haveΠα(λi) ≡ 0. Then

Iλi
=

n∑
α=1

Πα(λi)ξ
2
α = Πi(λi)ξ

2
i .

Hence,Iλi
andIλi+1 have different signs and therefore the open interval ]λi, λi+1[ contains

a root of the polynomialIt . The degree of the polynomialIt is equaln − 1; we haven − 1
disjoint intervals; each of these intervals contains at least one root so that all roots are real
and theith root lies betweenλi andλi+1. The first statement of the lemma is proved.

Let us prove the second statement ofLemma 3. Supposeλi < λi+1. Let firstλi < τ <

λi+1. Then the set

Vτ
def={ξ ∈ TxMn : ti (x, ξ) = τ },

consists of the pointsξ where the functionIτ (x, ξ)
def= (It (x, ξ))|t=τ is zero; then it is a

non-trivial quadric inTxMn ≡ Rn and its measure is zero.
Let τ be one of the endpoints of the interval [λi, λi+1]. Without loss of generality, we

can supposeτ = λi . Let k be the multiplicity of the eigenvalueλi . Then any coefficient
Πα(t) of the quadratic form(10)has a factor(λi − t)k−1. Therefore,

Ĩt
def= It

(λi − t)k−1

is a polynomial int andĨτ is a non-trivial quadratic form. Evidently, for any pointξ ∈ Vτ ,
we haveĨτ (ξ) = 0 so that the setVτ is a subset of a non-trivial quadric inTxMn and its
measure is zero.Lemma 3is proved. �
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The first statement ofTheorem 3follows immediately from the first statement ofLemma 3.
Let us join the pointsx, y ∈ Mn by a geodesicγ : R → Mn,γ (0) = x, γ (1) = y. Consider
the one-parametric family of integralsIt (x, ξ) and the roots

t1(x, ξ) ≤ t2(x, ξ) ≤ · · · ≤ tn−1(x, ξ).

By Corollary 1, each rootti is constant on each orbit(γ, γ̇ ) of the geodesic flow ofg so
that

ti (γ (0), γ̇ (0)) = ti (γ (1), γ̇ (1)).

UsingLemma 3, we obtain

λi(γ (0)) ≤ ti (γ (0), γ̇ (0)) and ti (γ (1), γ̇ (1)) ≤ λi+1(γ (1)).

Therefore,λi(γ (0)) ≤ λi+1(γ (1)) and the first statement ofTheorem 3is proved.
Let us prove the second statement ofTheorem 3. There exists a sufficiently small neigh-

borhoodU(γ (1)) of the pointγ (1) such that the pointγ (0) can be joined with any point of
U(γ (1)) by a geodesic lying in a small tubular neighborhood of the geodesicγ . We assume
that any two points of the neighborhoodU(γ (1)) can be joined by a geodesic; for example
we can assume thatU is a small ball of radius less than the radius of injectivity. Suppose
λi(y) = λi+1(y) for any pointy of some subsetV ⊂ U(γ (1)). Then by the first statement
of Theorem 3, the value ofλi is a constant (independent ofy ∈ V ). Indeed, joining any two
pointsy0, y1 ∈ V by a geodesic, we have

λi(y0) ≤ λi+1(y1) and λi(y1) ≤ λi+1(y0).

Denote this constant byC. Let us prove thatλi(γ (0)) = λi+1(γ (0)) = C. Let us join the
pointγ (0) with every point ofV by all possible geodesics. Consider the setVC ⊂ Tγ (0)M

n

of the initial velocity vectors (at the pointγ (0)) of these geodesics.
By the first statement ofLemma 3, for any geodesicγ1 passing through any point ofV ,

the valueti (γ1, γ̇1) is equal toC. Then, by the second statement ofLemma 3, the measure of
the setVC is zero and therefore the measure of the setV is also zero. The second statement
of Theorem 3is proved.

Let us prove the third statement ofTheorem 3. Letλi(γ (0)) = λi+1(γ (1)) = λ for some
i ∈ {1, . . . , n − 1} and for some constantλ. We will assume thatλi(γ (0)) < λi+1(γ (0)).
Let us show that the geodesicγ consists of the points where eitherλi or λi+1 (or bothλi

andλi+1) are equal toλ.
If ti is a multiple root of the polynomialIt (γ (0), γ̇ (0)), or if there exists a pointz ∈

Mn such thatλi−1(z) = λ then the statement obviously follows fromLemma 3and the
first statement ofTheorem 3. Supposeti is not a multiple root andλi−1(z) < λ for any
z ∈ Mn.

Consider the functionIλ : TMn → R. Suppose the differential dIλ is zero at some point
(z, ν) ∈ TMn, ν �= 0. Let us show that then eitherλi(z) or λi+1(z) (or bothλi(z) and
λi+1(z)) are equal toλ.

Indeed, consider the coordinate system such that the metricg at the pointz is given by
the diagonal matrix diag(1, 1, . . . , 1) and the mappingL is given by the diagonal matrix
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diag(λ1, λ2, . . . , λn). Then the restriction of the functionIλ to the tangent spaceTzM
n is

given by

n∑
α=1

ξ2
αΠα(λ).

The partial derivatives∂Iλ/∂ξα are

∂Iλ

∂ξα

= 2Πα(λ)ξα.

Thenλ is equal to one of the numbersλ1, . . . , λn; by assumption it can be equal to either
λi(z) or λi+1(z).

Now let us show that the differential dIλ vanishes at every point(γ (τ ), γ̇ (τ )). Evidently
the differential of any integral is preserved by the geodesic flow so that it is sufficient to
prove that the differential vanishes at the point(γ (0), γ̇ (0)).

By Lemma 3, we have

λ = λi(γ (0)) ≤ ti (γ (0), γ̇ (0)) = ti (γ (1), γ̇ (1)) ≤ λi+1(γ (1)) = λ,

so thatλ is a root of the polynomialIt (γ (0), γ̇ (0)) andIλ(γ (0), γ̇ (0)) = 0. By assump-
tions, the eigenvalueλi has multiplicity one in a small neighborhood ofγ (0). Then it
is a smooth function on this neighborhood, and the functionIλi(z)(z, ν) is also smooth
on the tangent bundle to this neighborhood. Consider the functionIλ(z, ν) − Iλi(z)(z, ν).
Its differential vanishes at the point(γ (0), γ̇ (0)). More precisely, by assumptions,λ is
a simple root of the polynomialIt (γ (0), γ̇ (0)) so that in a neighborhood of the point
(λ, (γ (0), γ̇ (0))) ∈ R × TMn the functionIt (z, ν) is a monotone function int . Butλi is no
greater thanλ. Then the differenceIλ(z, ν)−Iλi(z)(z, ν) is either always non-positive or al-
ways non-negative in a small neighborhood of(γ (0), γ̇ (0)). By assumptions,λi(γ (0)) = λ

so thatIλ(γ (0), γ̇ (0)) − Iλi(γ (0))(γ (0), γ̇ (0)) is zero and therefore the functionIλ(z, ν) −
Iλi(z)(z, ν) has a local extremum at the point(γ (0), γ̇ (0)) and its differential vanishes at
this point.

Now, the differential of the functionIλi(z)(z, ν) also vanishes at the point(γ (0), γ̇ (0)).
More precisely, as we have shown in the proof ofLemma 3, the functionIλi

is either always
non-positive or always non-negative. ButIλi(γ (0))(γ (0), γ̇ (0)) is equal toIλ(γ (0), γ̇ (0))

and is zero. Then the point(γ (0), γ̇ (0)) is an extremum of the functionIλi
and therefore

the differential ofIλi
vanishes at the point(γ (0), γ̇ (0)).

Thus, the differential of the functionIλ is zero at the point(γ (0), γ̇ (0)). Then it van-
ishes at each point of the curve(γ (τ ), γ̇ (τ )). Then at any pointτ eitherλi(γ (τ )) = λ or
λi+1(γ (τ )) = λ. Therefore, any point of the segment [0, 1] lies in one of the following sets:

Γ0 = {τ ∈ [0, 1] : λi(γ (τ )) = λ}, Γ1 = {τ ∈ [0, 1] : λi+1(γ (τ )) = λ}.

The subsetsΓ0, Γ1 are evidently closed and non-empty. Then they intersect; at each point
τ of the intersection we haveλi(γ (τ )) = λi+1(γ (τ )) = λ. Theorem 3is proved. �
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5. Pseudo-Riemannian metrics, Topalov–Sinjukov hierarchy for systems with
potential and quantum integrability

In this section we formulate the first results of combining the theory of Benenti systems
and of projectively equivalent metrics. The formal proofs are rather lengthy and will appear
elsewhere.

5.1. Commutative integrability for projectively equivalent pseudo-Riemannian metrics

Corollary 1can be generalized for pseudo-Riemannian metrics.

Theorem 4. Let pseudo-Riemannian metrics g, ḡ be projectively equivalent. As inSection 2,
consider the tensor field L given by(1).For any parameter t,consider the tensor fieldSt given
by (2). Let us identify the tangent and the cotangent bundles ofMn

by g. Consider the standard Poisson structure onT ∗Mn. Then, for any t1, t2, the
functions

Iti : TMn → R, Iti (ξ)
def=g(Sti (ξ), ξ)

are commuting integrals for the geodesic flow of g.

Sketch of the proof: The fact that the functionsIt are integrals for the geodesic flow of
g follows from the construction of integrals for projectively equivalent Riemannian metric
given in[17]. One can note that this construction does not use the positive definiteness of
the metrics.

The problem was to prove the commutativity of these integrals; the original proof in
[17] essentially uses the local description obtained in[8] for simultaneously diagonalizable
metrics only.

To show that the integralsIt commute, one can use the bi-Hamiltonian formalism for
Benenti systems developed in[7]. One can check that the results of[7] are also true for
pseudo-Riemannian metrics so that ifL is Benenti tensor forg then the functionsIt com-
mute. Now, byRemark 6, if two pseudo-Riemannian metricsg and ḡ are projectively
equivalent, the tensor fieldL is Benenti tensor field for the metricg so that the integralsIt

commute.

5.2. Topalov–Sinjukov hierarchy for Benenti systems with potential

In [16], Sinjukov suggested a construction that, given a pair of projectively equivalent
metrics, produces another pair of projectively equivalent metrics. Here we formulate this
construction in terms of Benenti tensor field.

Theorem 5 (Sinjukov [16]). Let g be a Riemannian metric. Suppose the tensor field L is
self-adjoint and positive definite. Denote bygL the Riemannian metric given by

giαLα
j .
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(In invariant terms, the metricgL is given bygL(ξ, ν) = g(Lξ, ν).) Then L is Benenti
tensor field forgL if and only if it is Benenti tensor field for g.

In other words, given a metric admitting Benenti tensor fieldL, we can immediately
construct another metricgL such thatL is Benenti tensor field also for it. We can apply the
construction once more; it is natural to denote the resulting metric bygL2 since it is given
by gL2(ξ, ν) = g(L2ξ, ν). We can go in other direction and construct the metricsgL−1,
gL−2 and so on:L is Benenti tensor field also for each of these metrics.

The oldest example of projectively equivalent metrics on the sphere is due to Beltrami
[1]. In view of Theorem 1, this example gives us non-trivial Benenti tensor field for the
metric of the round sphere. Strangely enough, Sinjukov did not apply his construction to
the example of Beltrami. It has been done in[12], see also[18]. It has been shown that,
consequently applying Sinjukov’s construction to Beltrami’s example, one cotangent the
metric of ellipsoid (as the metricgL) and the metric of the Poisson sphere (as the metric
gL−2).

In [2], Benenti formulated in invariant terms when it is possible to separate the variables
in the Hamiltonian system with the Hamiltonian being the sum of kinetic and potential
energy. Here we recall the part of this theory related to metrics admitting Benenti tensor
fields.

Theorem 6 (Benenti[2]). Let g be a Riemannian metric onMn, let L be Benenti tensor
field for g. Let us identify the tangent and the cotangent bundles ofMn by g. Consider the
standard Poisson structure onT ∗Mn. Consider the tensor fieldsSt given by formula(2).
Suppose there exist a function V onMn and a one-parametric family of functionsVt onMn

such that for any t

St (dV ) = dVt . (11)

Then, for anyt1, t2, the functions

Iti : TMn → R, Iti (ξ)
def=g(Sti (ξ), ξ) + Vti (12)

are commuting integrals for the Hamiltonian system with the HamiltonianH = g(ξ, ξ)+V .

It is easy to see that the integrals(12) are functionally independent if and only if the
integrals(3) of the geodesic flow ofg are functionally independent; in view ofCorollary 2,
this happens if and only if there exists a point of the manifold where the spectrum ofL is
simple.

May be the most famous example of such a situation is the so-called Neumann system:
the motion on the round sphere in the quadratic potential. In this case, the kinetic energy
of the system is given by the metric of the round sphere, which, in view ofTheorem 1and
Beltrami’s examples, admits a non-trivial Benenti tensor field. It can be verified directly that
the potential of the Neumann system satisfies condition(11), see[2]. Slightly less known
example is a certain generalization of the Neumann system described in[4], see also[2].

We see that condition(11)on the potentialV does not depend on the metricg. Therefore,
if L is Benenti tensor field forg with simple spectrum at least at one point, and if there
exist functionsV , Vt satisfying(11) then the Hamiltonian system with the Hamiltonian
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HLk
def=gLk (ξ, ξ) + V is also integrable. Thus, given a Hamiltonian system with the Hamil-

tonian satisfying the hypotheses ofTheorem 6, we can construct a hierarchy of Hamiltonian
systems; if the integrals(12) for the initial system are functionally independent, then any
system from the hierarchy is Liouville integrable. Thus, starting from the Neumann system,
one can construct infinitely many integrable Hamiltonian systems, whose kinetic energies
include the kinetic energy of the motion on the ellipsoid and the kinetic energy of the motion
on the Poisson sphere.

5.3. Quantum integrability for Benenti systems with potential

In [11], it has been shown that the “quantum” version ofCorollary 1 is also true (we
formulate this theorem in terms of Benenti tensor field).

Theorem 7 (Matveev[11]). If L is Benenti tensor field for the Riemannian metric g then,
for anyt1, t2, the operatorsIti : C2(Mn) → C0(Mn),

Iti (f )
def=div(Sti (grad(f ))), (13)

where tensor fieldsSt are given by(2), commute and commute with the Laplacian of the
metric g.

It appears that it is possible to include the potential fromTheorem 6.

Theorem 8. Let g be a Riemannian metric onMn, let L be Benenti tensor field for g.
Consider the tensor fieldsSt given by formula(2). Suppose there exist a function V onMn

and a one-parametric family of functionsVt onMn satisfying condition(11). Then, for any
t1, t2, the operators

Iti : C2(Mn) → C0(Mn), Iti (f )
def=div(Sti (grad(f ))) + Vti ,

commute and commute with the Laplacian of the metric g.

Note added in proof

After the paper had been submitted, we learned that Theorem 1 was independently ob-
tained by M. Crampin (preprint, 2001), and Theorem 4 was independently obtained by P.
Topalov (J. Math. Phys. 42 (8) (2001) 3898–3914).
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